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Classical model of intermediate statistics
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In this work we present a classical kinetic model of intermediate statistics. In the case of Brownian
particles we show that the Fermi-Dirac (FD) and Bose-Einstein (BE) distributions can be obtained,
just as the Maxwell-Boltzmann (MB) distribution, as steady states of a classical kinetic equation
that intrinsically takes into account an exclusion-inclusion principle. In our model the intermediate
statistics are obtained as steady states of a system of coupled nonlinear kinetic equations, where
the coupling constants are the transmutational potentials 7,... We show that, besides the FD-BE
intermediate statistics extensively studied from the quantum point of view, we can also study the
MB-FD and MB-BE ones. Moreover, our model allows us to treat the three-state mixing FD-MB-
BE intermediate statistics. For boson and fermion mixing in a D-dimensional space, we obtain a
family of FD-BE intermediate statistics by varying the transmutational potential 75,. This family
contains, as a particular case, when 7, = 0, the quantum statistics recently proposed by L. Wu,
Z. Wu, and J. Sun [Phys. Lett. A 170, 280 (1992)]. When we consider the two-dimensional FD-
BE statistics, we derive an analytic expression of the fraction of fermions. When the temperature
T — oo, the system is composed by an equal number of bosons and fermions, regardless of the value
of ngr. On the contrary, when T' — 0, 75, becomes important and, according to its value, the
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system can be completely bosonic or fermionic, or composed both by bosons and fermions.

PACS number(s): 02.50.Ga, 05.30.Fk, 05.40.+j, 05.20.Dd

I. INTRODUCTION

In the last few years, several authors have studied sys-
tems of particles which violate the Fermi-Dirac (FD) and
Bose-Einstein (BE) statistics. Experimental evidence has
been found for these violations and their phenomenology
has been studied [1]. Several theoretical approaches have
been proposed together with new intermediate or frac-
tional statistics or parastatistics, e.g., the anyonic statis-
tics [2], which is essentially defined in a two-dimensional
space, the paron statistics [3], the quon statistics [4],
and finally a variant of the quon statistics [5]. All these
are quantum statistics, since the concepts of boson and
fermion are properly defined only in the framework of
quantum physics.

The quon statistics is defined by the quon algebra for
the annihilation and creation operators,

aia;- - qa}a,- = 61']'

It has been proved that such a Fock-like space exists only
if —1 < ¢ < 1. Then the quon algebra is a deformation of
the FD (¢ = —1) and BE (g = 1) algebras as g goes from
—1 to 1 on the real axis. When —1 < ¢ < 1 the Fock-like
space is the direct sum of all the tensor product powers of
the single particle space. The antisymmetric subspace is
the Fock space of fermions while the symmetric subspace
is the Fock space of bosons, and we have a Maxwell-
Boltzmann (MB) statistics [5]. In the case ¢ = £1, in
addition to the previous commutation relation the quon
algebra satisfies also the relation
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a:-'a} - qa}a! =0 .
In the variant of quon statistics proposed in Ref. [5], ¢
has been replaced by a linear Hermitian and unitary op-
erator, which has eigenvalues +1, obeying the conditions

ga; —a;gq=0,
an—an:O.

Recently [6] we have shown that the FD distribution
can also be obtained in the framework of a classical non-
linear kinetics that takes into account an exclusion princi-
ple (EP), when the particles are Brownian. Generalizing
the EP and introducing an exclusion-inclusion principle
(EIP), it is possible to obtain from a classical equation
also the BE distribution [7]. Therefore we conclude that
there are three kinds of particles obeying the FD or BE
statistics, besides those obeying the MB statistics. These
three kinds of particles can be seen as three different
states of the same particle.

Introducing the concept of transmutation from a state
in which the particle obeys a statistics to another state in
which the particle obeys another statistics, it is possible
to treat the intermediate statistics by means of a classi-
cal kinetic approach. For fermion and boson mixing, we
obtain a family of intermediate statistics, which contains
as a particular case (when the transmutational potential
is zero) the quantum statistics proposed in Ref. [5].

In Sec. II we present the general kinetic equations of
the model. In Sec. III we comsider the stationary dis-
tributions of Brownian particles. In Sec. IV we study
the two-state mixing statistics. In Sec. V we consider
the fermion and boson mixing, and give particular atten-
tion to two-dimensional systems, studying their behavior
when the temperature changes. In Sec. VI we discuss
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the three-state mixing statistics. In Sec. VII we consider
the intermediate statistics when the transmutational po-
tential is zero. Finally, concluding remarks are given in
Sec. VIIL

II. PARTICLE KINETIC EQUATIONS

Let us consider the kinetics of NV classical particles in
a D-dimensional velocity space. The theory we develop
refers to the case of a continuous velocity space, but can
be easily extended also to the case of a discrete space.
We assume that a particle with velocity v can stay in s
different states obeying s different statistics; we indicate
with k the variable relative to these states. The particle
distribution is described by the occupation number indi-
cated by n.(t,v). A particle in the state x can diffuse
in the velocity space but, at the same time, can change
state (k — k’). We call this change of particle state
transmutation. The particle kinetics is governed by the
continuity equation

o (t,v)

ot + Vix(t,v) + Z Inen (t,v) =0 . (1)

K'#K
Jjx(t,v) represents the particle current in the velocity
space, and we assume that it is given by the expression

Je(t,v) = =[J(t,v) + VD (¢, v)ne(t, v)[1 + kn.(t, v)]
=D, (t,v) Vn,(t,v), (2)

where J,;(t,v) and D,(t, v) are the drift and diffusion co-
efficients respectively. We note that the current j.(t,v)
is the sum of two terms. The first one is proportional
to mx(t,v)[1 + knk(t,v)] and has its origin in the def-
inition of the transition probability of a particle from
v to Vi me(t,v o V') x ng(t,v)[1 + kn.(t,v')]. We
remark that this transition probability depends on the
particle population n,.(t,v) of the starting point v and
also on the population n.(t,v') of the arrival point v’.
If Kk = -1, m.(t, v — V') takes into account the EP. If
the arrival site v’ is empty, the transition probability de-
pends only on the population of the starting site. On
the other hand, if the arrival site is occupied, the transi-
tion is forbidden. The above expression of 7. (t,v — v’)
is the simplest one taking into account the EP during
the transition. This form of 7 (t,v — v’) is valid in the
“only individual transition” approximation. In the case
of “contemporary transitions,” it must be corrected in
order to be able to consider the case in which two parti-
cles, occupying at the same time two different sites 1 + 1,
could make a transition to the site i. Of course, due to the
EP, one of the two possible transitions is forbidden [6]. If
k = 0 the transition probability is not affected by the par-
ticle population at the arrival site and we have the stan-
dard linear Fokker-Planck kinetics. In the case k = 1,
7(t,v = v') introduces an inclusion principle. In fact
the population at the arrival site stimulates the transi-
tion and the transition probability increases linearly with
n.(t,v’). Finally, the second term in the expression of
the j. (¢, v) is the well known Fick current responsible for
particle diffusion.

The term j.x (t, v) is the net transmutational current
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and, according to the exclusion-inclusion principle (EIP),
must have the following expression:

jm—m’ (t7 V) = Gkr! (t» V)
X{Teont (t)nk(t, V)[1 + K'ne (8, V)]
i () (8, V)[L + K (t,V)]). (3)

The quantity 7., () is the transmutation rate, while
the function geu (t,v) = gurk(t,v) takes into account
that the transmutation of a particle from the state x to
the state x’ may depend on the particle velocity. Equa-
tions (1)—(3) define unequivocally the process of diffusion
and transmutation of the IV particles.

III. STATISTICAL DISTRIBUTIONS

In this section we consider the stationary states of the
system of particles satisfying the kinetics described in
Sec. II. We limit ourselves to the case of Brownian par-
ticles, when ¢ — oo. The statistical distribution or occu-
pational number n,(v) of the N particles can be seen as
the steady state of Eq. (1),

ne(v) = lim nu(t,v) - (4)

The case of Brownian particles is characterized at t — oo
by

Dy (00,v) = % ;o (8)

The number of particles N, in the

Ji(o0,v) =cxv

where 8 = (kT)™'.
state k is given by

N, = /n,c(v) dr , (6)

where d7 = d7; ---dr, with dr; = d(muv;)dz;/h is the
elementary volume in the phase space and h is a constant
with the right dimensions which can be identified with
the Planck constant. Then, if we call V' the volume of
the system, we have

D
Ne=v (%) /n,c(v) Py . (7)
The fraction of particles £, in the state x is given by
N,
== 8
{N N bl ( )

and the normalization condition can be written as
Z Eﬂ =1. (9)
K
We can define the average occupation number (n) as
<n> = Zénnx . (10)
~

The occupational number n, is given as a solution of
the differential equation j.(oco,v) = 0. At the same time
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n, must obey the condition j.xi(00,v) = 0. When
t — 00, both the particle current in the velocity space and
the net transmutation current are zero. After integration
of the equation j. (oo, v) = 0, we obtain

1

T explB(E — pa)] = 5 -

where E = 2muv? is the kinetic energy of the particle with
velocity v and the integration constant p, is the chemical
potential. For kK = —1, 0, and 1, Eq. (11) reproduces the
FD, MB, and BE statistical distributions, respectively.

IV. TWO-STATE MIXING

In this section we consider the case in which the parti-
cles may only be in two different states x and «'. Let
us write the transmutation rate at t = 00, Ty =
Tt (00), in the form

Thor!' = exp(ﬂsn—vn’) . (12)
We define the transmutational potential 7, as
Nek! = Sk—or! — Sx'—k (13)

obeying the condition

M = ~MNr's - (14)

For the stationary state, at ¢ — oo, the net transmuta-
tional current jx« (¢, v) must be zero. This fact imposes
the following condition on the chemical potentials:

B! = B + Nt - (15)

The fraction . of particles in the state  is given by (see
the Appendix)

€x = aexp(Buc)I, [k exp(Bux)] , (16)

with the constant a given by

where S is the area of a sphere with unitary radius in a
D-dimensional space and p = N/V is the particle density.
The function I, (z) is defined by means of the integral

¢D/2-1

ID(:E) = Aoo mdt . (18)

Using Eq. (10), we can write the average occupational
number (n) in the form

(n) = 1 — aexp[B(px + Nix' Mo {s' exp[B(px + N )1}
exp[B(E — px)] — &

aexp[B(px + N ) o {5 exp[B(kx + n,.)]}
exp[B(E — px — )] — &'

(19)

We note that, for 7. = —oo (no transmutations), all the
particles lie in the state . In fact from Eq. (19) we have
i = n,. The chemical potential u, may be calculated
from Eq. (9) and is the solution of the following algebraic
equation:

ID [nexp(ﬂ,un)] + exp(ﬂ’lm')

X I, K’ explB(ie + )]} = - exp(~Bux) - (20)

Equation (19) defines a statistics that is different from
the FD, MB, and BE ones. For k = —1,&' = 1 (or
& =1,k’ = —1) we have a FD-BE intermediate statistics;
for k = —1,k' =0 (or K = 0,k’ = —1) we have a FD-MB
intermediate statistics, and finally for K = 1,x’ = 0 (or
k£ =0,k' = 1) we have a BE-MB intermediate statistics.

V. BOSON-FERMION MIXING

In this section we consider the FD-BE intermediate
statistics that describe a mixing of bosons and fermions.
The fraction of fermions is

&r = aexp[B(us + TIBF)]ID{_exp[IB(u‘B +mse)]} 5 (21)

s D/2 where p, may be determined as solution of Eq. (20) with
a="22 <2_m) , (17) K= 1,/{.’ = —1 and ps = fg,Mex’ = Nge- The average
2p \ Bh? occupational number is given by
J
< ) — 1 —¢ 2 - [1 — exp(—anBF)] exp[ﬂ(E — ﬂs)] (22)
exp[,B(E — Hg )] -1 r eXp(_ﬂ"hsF) exp[Zﬂ(E - "B)] + [1 - eXP(—ﬂTIap )] exp[,B(E — Hg )] -1

Equation (22) gives the average occupational number
as a correction of the occupational number of a system
of bosons. The correction is due to the presence of a
fraction £, of fermions. Obviously (n) can be written as
a correction of the occupational number of a system of
fermions, due to the presence of a fraction £, of bosons.

Let us examine the statistics of a two-dimensional

[
boson-fermion mixing. In this case the integral I>(z) of
Eq. (18) can be easily calculated (see the Appendix). If
we introduce the energy v,

h%p

= 23
V=g (23)

we have for the chemical potential p,
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exp(fv) — 1
exp(Bv) + exp(Brae )

exp(Buy) = (24)

and for the fraction of fermions

_ 1 [L+exp(Bngg )] exp(By)
Bv — exp(Bng;) + exp(Bv)

We observe that, for n,, = v/2, £, is independent
of the temperature T = 1/(k8) and assumes the value
&, =1/2. From Eq. (25) for T — oo we have

33 (25)

- 1 1 [ Nge 1 v
€F~2+4<u 2) kT (26)
Then the system is composed of an equal number of
bosons and fermions. For T — 0 from Eq. (25) we
obtain
0, 75 <0
€r = Mee/V, 0<mg <v (27)
L, Mg 2 v

We remark that the transmutational potential 7, is very
important because the fraction of fermions £, at T =0
depends on its value. For n,, < 0 all the particles are
bosons, while for n,, > v all the particles are fermions.
Instead, when 0 < 7, < v the fermion fraction is 7, /v
(and then the boson fraction is 1 — 9, /v).
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VI. THREE-STATE MIXING

In this section we consider particles that can be in three
different states k = —1,0,1. The occupational number
of the state k is given for ¢ — oo by Eq. (11) and,
as a consequence, we do not have particle current in the
velocity space. If we impose the condition that for t = oo
also the three net transmutational currents be zero, we
obtain two conditions on the chemical potentials p,,

Bpy = Hp T M > (28)

Hp = pg + Ngp (29)

and one condition on the transmutational potentials 7.,

Ner = Mom T Tur - (30)

The conditions given by Egs. (28) and (29) allow the
evaluation of p,, and p, as a function of p,. The con-
dition given by Eq. (30) requires that the transmuta-
tional potential of the two-step, indirect transmutation
B - M — F be equal to the transmutational poten-
tial of the one-step, direct transmutation B — F. For
the average occupational number we obtain the following
expression:

o 1 ks — K1 + [1 = exp(—Blmsn,)] xpIB(E — o))
") = SPBE = 1= 2, & ToxplB(E — i, )T = xHexBIB(E — oy — )~ ] ey
Lk, Tesults as the solution of the equation
I,[k1exp(Bux, )] + Z exP(/H"IMNj M, {K; exp[B(px, + "N1Nj)]} = 2 exp(—fpx,) (32)

i=2,3

and &, is given by

én,‘ = aexp[B(px, + Nrir; )]
xI,{r; exp[B(px, + Nr1k; )N - (33)

Equations (31) and (32) reproduce the two-state mixing
statistics if we let the index j take only the value j = 2.
We note, from Eq. (31), that the average occupational
number is given as a correction of the occupational num-
ber when the system is in the state x;. The correction
is given by the two terms of the sum and is due to the
presence of the fractions &, and &, of the particles that
lie in the states ko and k3.

VII. SYMMETRIC TRANSMUTATION

In Sec. V we have considered the mixing of bosons and
fermions. Equation (22) gives the average occupational
number of the system and defines a family of statistics,

I

varying the transmutational potential 7, . In the partic-
ular case in which 7., = 0, i.e., when the transmutational
rates 7., and 7. _,,. are equal, we have u, = p, = p
and the average occupational number assumes the fol-
lowing form:

~ 1 ~ 2,
M = oBE-p -1 epEAE -1 Y

The intermediate statistics given by Eq. (34) has been
recently obtained by Wu, Wu, and Sun [5] in a quan-
tum context and the particles obeying this statistics are
a particular type of quons.

Finally in the case of a symmetric transmutation for
the three-state mixing statistics treated in Sec. VI we
obtain
(m) = : s

exp[B(E — p)] -1  exp[2B(E — p)] - 1
_ n
exp[26(E — p)] — exp[B(E — p)]

(35)
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VIII. CONCLUSIONS

We have presented a classical kinetic model for inter-
mediate statistics. We have shown that the steady states
of a nonlinear kinetics that takes into account the EIP are
given by the FD, MB, and BE distributions. In our model
the intermediate statistics are obtained as steady states
of a system of coupled kinetic equations where the cou-
pling constants are the transmutational potentials 7),,:.
Besides the FD-BE intermediate statistics, extensively
studied from the quantum point of view, we have stud-
ied also the MB-FD and MB-BE ones. Moreover, our
model allows us to treat the three-states mixing FD-MB-
BE statistics. For the boson-fermion mixing in a space
of arbitrary dimension D, we obtain a family of FD-BE
intermediate statistics, varying the transmutational po-
tential 7,,. This family contains as a particular case
when 7, = 0 the quantum statistics proposed by Wu,
Wu, and Sun [5].

In the case of the two-dimensional FD-BE intermedi-
ate statistics, it is possible to calculate analytically the
fermion fraction £, (and then the boson fraction) as a
function of the temperature T, the transmutation poten-
tial 7y, and the number N of particles. For T — oo
independent of 7., and N, the system is always com-
posed of an equal number of fermions and bosons. On
the contrary, when T' — 0, the system composition de-
pends strongly on 7. For 7,. < 0 all the particles are
bosons, while for 7,, > v all the particles are fermions.
When 0 < 7, < v the fermion fraction is 7, /v (and
then the boson fraction is 1 — 7. /v). We note that,
when 7, = v/2, independent of the temperature, the
system is formed by an equal number of fermions and
bosons.

A study of the FD-BE statistics for D # 2 and the FD-
MB, BE-MB, FD-MB-BE statistics for different values of
D, would be very important, because the fraction of the
different kinds of particles depends on D.
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APPENDIX

We start from the definition of the fraction of particles
in the state x given by Egs. (7) and (8),

m\ D dPv
b= % (7) /exp[ﬂ(E —p)l -k’

where p = N/V is the particle density. After defining the
dimensionless velocity u;

i = 1) ™o
T T 2 1 b

(A1)

(A2)

we have

D/2
€x 1(%) exp(Bpx)

Tp
dPu

X
/ exp(u? + ... + u3) — kexp(Bux)

(A3)
For the calculation of the integral we observe that if we
call u the modulus of the vector u = (uy,...,u,), we have

dDuzdul---duD =SDuD_1du , (A4)

where S, is the area of a sphere with unitary radius
in a D-dimensional space (S1 = 2, S; = 2w, S3 = 4m,

Sy =2m2, S5 = %12, Sg=n3, S; = %‘5—;13, ... )- Then we
have
D/2
1/(2m
e = ; (W) exp(ﬁy‘ﬂ)sp
oo D-1
X / 2“ du . (A5)
o exp(u?) — mexp(Bun)

Let us make the substitution of the integration variable
u—st=u?, (A6)

and introduce the function

> tD/2-1g4
= - A
Le= [ eas (A7)
and the constant
D/2
2p \ Bh?

We obtain the following expression for the fraction of
particles in the state «:

& = aexp(Bux)l,[kexp(Bux)] - (A9)
The value of the function I, (z) for z =0 is
1,(0) = / £D/2-1 exp(—t)dt = T (g) (A10)
0

I, (—z) can be calculated starting from I, (z) and I, (z?)
according to

I (—z) =I,(z) — 2'7P/2z1_(2?) . (A11)

In the case of a two-dimensional space, we can introduce
the energy

h%p

v=—— A12

2mm ( )

and we have for the constant a the following simple ex-
pression:

o= % (A13)
Finally the function I(z) can be easily calculated,
Ly(z) = 1 In L i T#0 (A14)
z  |1-—z
L0)=1 . (A15)
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